skip to main content


Search for: All records

Creators/Authors contains: "Xiong, Ying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Outdoor air pollution, particularly volatile organic compounds (VOCs), significantly contributes to the global health burden. Previous analyses of VOC exposure have typically focused on regional and national scales, thereby limiting global health burden assessments. In this study, we utilized a global chemistry-climate model to simulate VOC distributions and estimate related cancer risks from 2000 to 2019. Our findings indicated a 10.2% rise in global VOC emissions during this period, with substantial increases in Sub-Saharan Africa, the Rest of Asia, and China, but decreases in the U.S. and Europe due to reductions in the transportation and residential sectors. Carcinogenic VOCs such as benzene, formaldehyde, and acetaldehyde contributed to a lifetime cancer burden affecting 0.60 [95% confidence interval (95CI): 0.40–0.81] to 0.85 [95CI: 0.56–1.14] million individuals globally. We projected that between 36.4% and 39.7% of the global population was exposed to harmful VOC levels, with the highest exposure rates found in China (82.8–84.3%) and considerably lower exposure in Europe (1.7–5.8%). Open agricultural burning in less-developed regions amplified VOC-induced cancer burdens. Significant disparities in cancer burdens between high-income and low-to-middle-income countries were identified throughout the study period, primarily due to unequal population growth and VOC emissions. These findings underscore health disparities among different income nations and emphasize the persistent need to address the environmental injustice related to air pollution exposure.

     
    more » « less
  2. Abstract

    Global economic development and urbanization during the past two decades have driven the increases in demand of personal and commercial vehicle fleets, especially in developing countries, which has likely resulted in changes in year-to-year vehicle tailpipe emissions associated with aerosols and trace gases. However, long-term trends of impacts of global gasoline and diesel emissions on air quality and human health are not clear. In this study, we employ the Community Earth System Model in conjunction with the newly developed Community Emissions Data System as anthropogenic emission inventory to quantify the long-term trends of impacts of global gasoline and diesel emissions on ambient air quality and human health for the period of 2000–2015. Global gasoline and diesel emissions contributed to regional increases in annual mean surface PM2.5(particulate matter with aerodynamic diameters ⩽2.5μm) concentrations by up to 17.5 and 13.7µg m−3, and surface ozone (O3) concentrations by up to 7.1 and 7.2 ppbv, respectively, for 2000–2015. However, we also found substantial declines of surface PM2.5and O3concentrations over Europe, the US, Canada, and China for the same period, which suggested the co-benefits of air quality and human health from improving gasoline and diesel fuel quality and tightening vehicle emissions standards. Globally, we estimate the mean annual total PM2.5- and O3-induced premature deaths are 139 700–170 700 for gasoline and 205 200–309 300 for diesel, with the corresponding years of life lost of 2.74–3.47 and 4.56–6.52 million years, respectively. Diesel and gasoline emissions create health-effect disparities between the developed and developing countries, which are likely to aggravate afterwards.

     
    more » « less